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persistence is necessary to characterize fully the resilience of coral reef systems. To assess multiscale responses to 

thermal perturbation of corals in the Coral Triangle (CT), we developed a spatially explicit metacommunity model 

with coral-algal competition, including seasonal larval dispersal and external spatio-temporal forcing. We tested 

coral sensitivity in 2083 reefs across the CT region and surrounding areas under potential future temperature 

regimes, with and without interannual climate variability, exploring a range of 0.5 to 2.0°C overall increase in 

temperature in the system by 2054. We found that among future projections, reef survival probability and mean 

percent coral cover over time were largely determined by the presence or absence of interannual sea surface 

temperature (SST) extremes as well as absolute temperature increase. Overall, reefs that experienced SST time 

series that were filtered to remove interannual variability had approximately double the chance of survival than 

reefs subjected to unfiltered SST. By the end of the forecast period, the inclusion of thermal anomalies was 

equivalent to an increase of at least 0.5°C in SST projections without anomalies. Change in percent coral cover 

varied widely across the region within temperature scenarios, with some reefs experiencing local extinction while 

others remaining relatively unchanged. Sink strength and current thermal stress threshold were found to be 

significant drivers of these patterns, highlighting the importance of processes that underlie larval connectivity and 

bleaching sensitivity in coral networks. 

Introduction 

The Coral Triangle (CT) region in the Indo-Pacific has long been recognized as the epicenter of coral 

diversity with over 500 species of stony coral (Veron et al., 2009). These reefs 

livelihoods for over 100 million people in coastal communities, yet the CT is also one of the most threatened reef 

systems in the world (Burke, Reytar, Spalding, & Perry, 2011). Local stressors such as overfishing, and watershed-

26 Abstract 

27 In light of rapid environmental change, quantifying the contribution of regional- and local-scale drivers of coral 

direct providers of serve as 

49 based pollution are widely recognized as factors contributing to loss of coral cover. At the global scale, climate 

change is driving an increase in sea surface temperature (SST) and an associated frequency of mass coral bleaching 

51 and mortality events in the region (Donner, Skirving, Little, Oppenheimer, & Hoegh-Gulberg, 2005; Kleypas, 
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52 Castruccio, Curchitser, & McLeod, 2015). Widespread coral mortality has negative cascading effects throughout 

53 the reef ecosystem and the people that rely on them for food and income (Bruno & Bertness, 2001). Some 

54 consequences of coral decline include the loss of structural complexity that living coral maintains, decreases in the 

diversity and abundance of fish species (Graham et al., 2006), and reduced reef ecosystem services such as coastal 
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protection from storms (Beck et al., 2018). 

Like many areas in the world, increasing sea surface temperatures and bleaching frequency have been 

documented in the Coral Triangle (Bruno & Selig, 2007; Mcleod et al., 2010). Across the region, a SST warming of 

roughly 0.1-0.2°C per year has been reported (Peñaflor, Skirving, Strong, Heron, & David, 2009). However, the 

complicated bathymetry 

temperature and turbidity (Kleypas, Castruccio, Curchitser, 

ostensibly lead to a wide range of reef-scale biological responses to climate-related stressors, namely warming 

waters that trigger coral bleaching events. Indeed, coral cover in the Indo-Pacific region is in active decline. 

Between 1997 and 2003, an alarming 3,000+ km2 of coral cover per year is estimated to have been lost across the 

broader Indo-Pacific region (Bruno & Selig, 2007). More recent assessments report continued degradation in the 

Indo-Pacific and surrounding areas: the Great Barrier Reef (GBR) lost approximately 50% of hard coral cover 

between 1985 and 2012 (De’ath, Fabricius, Sweatman, & Puotinen, 2012) and experienced a 30% decline from 

March to November during the 2016 bleaching event (Hughes, Kerry, et al., 2018), while coral cover in the 

Philippines declined by about one third during the last decade (Licuanan, Robles, & Reyes, 2019). Additionally, 

climate anomalies such as those experienced during El Niño-Southern Oscillation events are known to trigger 

regional-scale mass bleaching events in the CT (Kleypas, Castruccio, Curchitser, & McLeod, 2015). While climate 

variability is a crucial factor in determining the susceptibility of corals to thermal stress, particularly in subsequent 

mass bleaching events (Boylan & Kleypas, 2008; Donner, 2011; Guest et al., 2012; McClanahan & Maina, 2003; 

Thompson & van Woesik, 2009), we have yet to fully understand the relative contribution of climate anomalies 

and rising mean temperatures to the persistence of coral metapopulations. 

It is critical that the spatio-temporal response of CT reefs to thermal stress be characterized, with 

particular consideration towards the heterogeneous yet interconnected nature of these reefs. The recovery of 

coral and fish populations is an active and promising area of study, with several researchers suggesting that 

connectivity through larval dispersal could facilitate the population regrowth of reef organisms in areas where they 

have become relatively depleted (Cruz & Harrison, 2017; Hock et al., 2017). Recent marine larval dispersal studies 

that couple ocean circulation models and Lagrangian particle tracking simulations have elucidated patterns of 

area's and oceanography maintain spatially diverse micro-climates in terms of 

& McLeod, 2015), and these differences could 

82 connectivity over a range of spatial scales for several species (including Beger et al., 2015; Cowen, Paris, & 

83 Srinivasan, 2006; Cowen, Lwiza, Sponaugle, Paris, & Olson, 2000; Thompson et al., 2018; Villarino et al., 2018; 

84 Watson et al., 2011) as well as physical barriers that prevent larval exchange across subpopulations (Thompson et 
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al., 2018; Wood et al., 2016); these results support mechanisms for empirically observed patterns in species 

86 distributions and population structure (Berkley, Kendall, Mitarai, & Siegel, 2010; Galindo, Olson, & Palumbi, 2006; 

87 Galindo et al., 2010; Kool, Paris, Andréfouët, & Cowen, 2010; Kool, Paris, Barber, & Cowen, 2011). However, few 

studies have linked these connectivity patterns to broader community dynamics such as the competition for space 
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between corals and macroalgae (but see Melbourne-Thomas et al. 2011; Melbourne-Thomas et al. 2011; Watson 

interactions among coral, macroalgae, and herbivores 

recovery from a coral-depauperate to a coral-dominated state (Mumby, Hastings, & Edwards, 2007). Furthermore, 

at least some reefs are thought to exhibit alternative stable states (Baskett, Fabina, & Gross, 2014; Blackwood & 

Hastings, 2011; Fung, Seymour, & Johnson, 2011; Mumby et al., 2007) meaning that trajectories can 

towards either coral- or macroalgal-dominance depending on initial conditions. Larval recruitment, even when 

occurring seasonally, can have a significant impact on such dynamics (McManus, Watson, Vasconcelos, & Levin, 

2019). In light of these potential interactions, it is necessary to simultaneously consider multiple processes, namely 

within-patch competition and regional-scale larval dispersal, when assessing the potential impact of climate 

change on a reef system. 

To explore the possible nonlinear and multiscale response of coral reefs in the Coral Triangle and its 

surrounding areas to climate change, we developed a metacommunity model based on an idealized system of 

spatially realistic connectivity network. The 

macroalgae populations on reef patches that result from competition for space between coral and macroalgae, as 

well as coral recruitment via larval exchange among reef patches within the connectivity network. The seasonal 

exchange of coral larvae among patches was modeled with a semi-empirical connectivity dataset generated from 

an ocean circulation model of the CT based on observed spawning patterns of a model coral found throughout the 

region (Acropora millepora). The effects of thermal stress on coral populations were simulated by directly linking 

coral mortality to heat stress under four different temperature increase scenarios: 0.5°C, 1.0°C, 1.5°C and 2.0°C 

period of 47 years. Finally, the role of interannual temperature variability 

determined by comparing results among simulations that incorporate SST time series without interannual SST 

variance (‘filtered’ scenarios) and those with baseline, unfiltered SST (‘unfiltered’ scenarios). 

Materials and methods 

et al. 2011). 

The competitive outcomes within the reef benthos have broad ecological implications. In particular, the 

on reefs can theoretically determine the potential for 

evolve 

103 reefs in metacommunity model tracks changes in coral and a 

coral persistence over a on was 

114 CT-ROMS 

An implementation of the Regional Ocean Modeling System for the Coral Triangle, CT-ROMS, was used to 

116 simulate ocean circulation and SST for a 47-year hindcast from 1960-2007 (Castruccio, Curchitser, & Kleypas, 
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117 2013). CT-ROMS has a 5-km horizontal grid resolution with 50 vertical terrain-following levels. The full CT-ROMS 

118 hindcast was for 50 years, with the first 3 years considered as spinup for the model to reach a dynamical balance. 

119 The model domain spans 95°E-170°E and 25°S-25°N and is set to maximize coverage of reefs within the region 

(Figure 1). Boundary conditions for the hindcast are based on the Simple Ocean Data Assimilation (Carton & Giese, 
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2008) and Modern Era-Retrospective Analysis for Research Applications (MERRA) analysis (Rienecker et al., 2011). 

Tides in CT-ROMS are explicitly solved, and comparisons between observed and model-generated temperature 

circulation patterns show high agreement (Castruccio et al., 2013). When evaluated against the 

satellite-derived Coral Reef Temperature Anomaly Database (Selig, Casey, & Bruno, 2010), CT-ROMS SST outputs 

accurately captured both means and variability. The root-mean-square (RMS) errors between observed and model 

SST values were generally less than 1°C, with a mean RMS error for the entire domain of 0.7°C (Castruccio et al., 

2013). For the present study, we incorporated both SST and ocean current velocity fields from the CT-ROMS 1960-

2007 hindcast into a novel coral reef metacommunity model to simulate the ecological implications of different 

temperature increase scenarios across the Coral Triangle. 

Metacommunity model 

We developed a discrete-time and spatially explicit form of a well-studied coral-algal competition model 

(Elmhirst, Connolly, & Hughes, 2009; Fung, Seymour, & Johnson, 2011; Mumby, Hastings, & Edwards, 2007) that 

incorporates a pulsed, annual week-long coral reproductive event (McManus, Watson, Vasconcelos & Levin, 2019) 

during April of every year. To calculate the rate at which coral area is added during the recruitment period at site i � (���), we have 

is time in days, � 
is the total amount of reef area (i.e. colonizable hard bottom) area at site � is �����, where �� is the fractional coral cover at 

Multiplying this term by 

that reach site � from site 

site (including self-recruitment), which is further summed across the seven reproductive days. On a daily time-

scale, larval recruitment is “on” during the first week of April and “off” 

123 and ocean 

135 during year 

127 ����� = ∑ ∑�����(�)���� (1) ��� = 120� = 1 � � = 2083 � ��137 where is the total number of reefs ( is the size per individual of a coral recruit and ), �. The number of coral larvae produced �139 at each site is the effective fecundity or the number of viable larvae produced per unit area of �140 coral and (See Table S1 for a summary of parameter values and definitions). ���� from the potential connectivity matrix (described below) gives the number of larvae � �during year . This quantity is summed across all sources for each destination or sink 

at all other times of the year to 

145 approximate the spring spawning period for A. millepora (Baird, Guest, & Willis, 2009). If we let mod(�,�) be the ��(�)146 remainder of the division of � by �, larval recruitment during the first week of April can be written as ��(�) = � if 

147 120 ≤ mod(�,365) ≤ 127 and ��(�) = 0 during the rest of the year. This recruitment is scaled by the amount of 
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148 coral cover at the source site and the free space available in the destination site. Note that we do not implement 

149 an explicit relationship between coral adult abundance and larval supply at any particular patch. Instead, we set an 

effective fecundity wherein larvae are either retained in the same reef, exported to other sites or lost from the 

network based on potential connectivity. In our simulations, the same set of connectivity matrices are used for 
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both the hindcast and the forecast, ignoring any changes in 

assumption, given that differences between hindcast and future 

connectivity patterns are relatively small (Thompson et al., 2018). 

In addition to natural coral death 

mortality due to bleaching, 

bleaching stress. Since the relationship between 

see Welle et al., 2017), a linear relationship was assumed for coral death due to bleaching: 

The full system with coral 

Δ��(�) = 

is the change from day t to day t+1, 

, free space, is equivalent to 

to coral cover (McManus, Watson, Vasconcelos & Levin et al., 2019) such that �(��(�)) = �0 + (�1 

is the coral rate of growth, 

is the maximum grazing rate when 

The goal of this study is to provide a conservative estimate of the relative effects of thermal stress 

magnitude and interannual variability on corals by assessing the potential sensitivity of a reef system to increasing 

temperatures. In order to focus on this stressor, we made several simplifying assumptions regarding the system. 

First, with the exception of total reef area, all sites are homogeneous with regards to the various rates occurring 

ocean circulation patterns. This is a reasonable 

ocean circulation projections and resulting 

�0 (i.e., mortality that is unrelated to bleaching), additional coral ��, was incorporated as a function of ��� � ��� and a factor that scales to ��� and coral mortality has yet to be fully characterized (but 

��(�) = � ����(�) (2) 

To capture the effects of rapid algae colonization after a bleaching event (Diaz-Pulido & McCook, 2002; 

161 Glynn, 1993), a term for constant, low-level external recruitment of algae � was included sensu Elmhirst et al. 

162 (2009). 

��(�) ��(�) � �and macroalgal cover on site on day is then Δ��(�) = ���(�)��(�) + ��(�)��(�) (�0 + ��)��(�) (3) 

���(�)��(�) + ���(�)��(�) + ���(�) �(��(�))��(�) (4) 

Δ � �166 Where is the coral rate of growth, is the macroalgal rate of growth, and ��(�) ��(�) ��(�)1 . We used a convex form for macroalgal grazing with respect �0)(��(�))2 . � � �0 � = 0169 Here, is the macroalgal rate of growth, is the baseline grazing rate when �1 � = 1and . 

within a reef patch such as grazing, coral growth and macroalgal growth. In reality, sites within our study region 

176 vary greatly in terms of the benthic composition and the multitude of organisms that each reef patch supports. 

177 Second, our metacommunity model lacks larval dynamics (Connolly & Baird, 2010) such that we assume perfect 
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178 survival of coral larvae; larval mortality is implicit in the effective fecundity term (Table S1). Third, we do not 

179 consider size-specific mortality of corals that would disproportionally affect smaller recruits compared to larger 

adult colonies (Hughes & Jackson, 1980). Finally, while we recognize that phase shifts from coral-macroalgal 

dominance are rare in the Indo-Pacific (Roff & Mumby, 2012), we note that although our framework allows algae 
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to “take over” when coral cover declines from bleaching mortality, there is also capacity for coral recovery if 

thermal stress is reduced and/or recruitment is sufficiently high. 

Potential connectivity 

Potential connectivity matrices ( 

Thompson et al., 2018) were used in the metacommunity simulations. These larval dispersal probabilities were 

calculated based solely on hydrodynamics (Mitarai, Siegel, Watson, Dong, & McWilliams, 2009; Watson et al., 

2010) for the hindcast with TRACMASS (Döös, Kjellsson, & Jönsson, 2013), an offline Lagrangian particle tracking 

that follows the 

computational simplicity, grid cells were binned into groups of 8 x 8, producing a total of 2947 sites (each cell is 25 

km2 on average; each grouping is ~1600 km2). Reef areas for each group were then calculated based on the Global 

Distribution of Coral Reefs (IMaRs-USF, 2010). Spring particle release was simulated from reefs across the CT for 

the hindcast period with a 10-day pelagic larval duration (i.e. larvae spend 10 days in the water before settlement). 

This is well within the empirically-measured survival window for a typical reef-building coral species found in the 

Indo-Pacific (Connolly & Baird, 2010). In this study, sites were considered only if they contained nonzero reef area, 

reducing the number of locations to 2083. We also completed a second set of simulations using coral connectivity 

calculated with a pelagic larval duration of 30 days (see Figures S1-S5). In total, a set of 47 potential connectivity 

matrices D of size 2083 x 2083 were utilized from Thompson et al. (2018), one for every year of the hindcast 

simulation (1960-2007). Characteristics of these potential connectivity matrices are described in detail elsewhere 

(Kleypas, Castruccio, Curchitser, & McLeod, 2015; Thompson et al., 2018; Thompson et al., 2014). To isolate the 

effects of absolute temperature increase and interannual variability, we used the same potential connectivity 

matrices for all hindcast and forecast scenarios. 

Sea surface temperatures 

To test the effects of interannual SST variability on coral reef dynamics, future warming for the 2007-2054 

time period was simulated by generating an unfiltered (including interannual climate variability) and filtered 

(interannual climate variability removed – see below) set of SST time series. These unfiltered and filtered SSTs over 

�) based on CT-ROMS current velocity fields from 1960-2007 (from 

189 routine trajectory of particles from Eulerian velocity fields generated by CT-ROMS. For 

191 

192 

207 time included increases of 0.5°C, 1.0°C, 1.5°C and 2.0°C over a period of 47 years, for a total of eight forecast 

208 scenarios (see examples in top rows of Figures 2A and 2B). These temperature increases are within the range of 

209 uncertainty produced by CMIP5 temperature forecast models for the region by 2050 (Field et al., 2014; Scott, 
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Alexander, Murray, Swales, & Eischeid, 2016). For example, the CMIP5 multi-model ensemble for the Sulu-Celebes 

211 Sea regions exhibits an average warming of ~1.0°C from 2007 to 2050, while some models predict an increase of 

212 greater than 3.0°C (Figure S6). 
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tFor this study, we generated weekly SST time series forecasts by imposing a linear increase on the CT-

ROMS detrended 1960-2007 time series (SST0), with and without application of a band-stop filter. These unfiltered 

(with interannual variability) and filtered (without interannual variability) SST forecast time series 

incorporated in the metacommunity simulations. First, hindcast SST data (SSTH) were detrended using linear least-

squares fitting. This reduced variability at the lowest decadal frequencies (<1 cycle/7 years) and guaranteed 

continuity in the transition from hindcast to forecast temperatures. Second, future SST time series were generated 

by imposing a linear increase on the detrended hindcast, 

calculated by taking the overall � as �� = Δ�/�tot 

Finally, to examine the effect of interannual SST variability on coral reef communities, a band-stop filter 

that reduced variance between approximately 1 cycle/7 years and 1 cycle/1.25 years was applied to the hindcast 

and forecast SSTs to create a set of temperature time series without extreme values (see Figures S8-S10 for power 

spectral density plots at representative sites). This method preserved annual, sub-annual and long-term trends (>7 

year periodicity) while removing interannual variability that is associated with El Niño and La Niña events (top rows 

in Figure 2A and 2B). 

Degree heating weeks 

As a metric of thermal stress, the degree heating weeks (DHWs; °C-weeks) experienced at each site over 

time were calculated for both filtered and unfiltered SST time-series (second rows in Figure 2A and 2B). Following 

Kleypas et al. (2015) and Kleypas et al. (2016) , the thermal stress threshold (TST) was calculated at each location 

���� = ���� 
computed by summing the excess in temperatures that surpass the local TST across a 12-week period. In general, 

were then 

���0. The slope of increase for each scenario was � = {0.5, 1.0, 1.5, 2.0}°C and dividing by the number of weeks , giving the slope � � �221 for scenario . The new temperature for scenario , at site and time in weeks, , was computed 

222 as ��� �,�(�) = ���0,�(�) + ��,� � (5) 

by computing the standard deviation (�) of the annual mean monthly maxima (��� ) from 1960 to 1980. This 

climatology was chosen to avoid recent large-scale bleaching years (Kleypas et al., 2015). The TST at site � is 

+ 2.5��236 therefore (Donner, 2011). The DHW time series at each site and for each scenario was 

238 4-8 DHW, 8-12 DHW, and >12 DHW are linked to mild, moderate, and severe bleaching, respectively (Kleypas, 

239 Castruccio, Curchitser, & McLeod, 2015). 

Simulations 
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241 Parameters that allowed for alternative coral- and algal-dominated states were chosen for all simulations; 

242 all reefs were set with equivalent parameters except for the area (see Supplemental Information for parameter 

243 values and sources). Simulations were run at a daily time step in three parts: the spinup, hindcast, and forecast. �0 = 0.99 �0 = 0.01 During spinup, reefs were initialized in a high coral cover state, such that 
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initialized in this state since our aim was to detect the sensitivity of sites to temperature-driven mortality. In other 

words, a relatively high baseline facilitated our ability to detect and quantify coral decline. During the spinup, the 

system was solved until it reached equilibrium (t=18,614 days) using the first year’s potential connectivity D1 and 

no mortality due to bleaching 

used as the initial conditions for the 1960-2007 hindcast scenarios with unfiltered (interannual variation preserved) 

and filtered (interannual variation removed) SSTs, run with time-varying dispersal D and coral mortality due to 

bleaching based on DHW. Values at the end of the hindcasts served as initial conditions for the four unfiltered and 

four filtered SST forecast scenarios. Note that mortality due to coral bleaching is calculated at the daily time step 

while DHW was updated on a weekly basis (i.e., mortality due to bleaching was constant every day for one week). 

While the modified SST time series were used to compute weekly DHW based on each scenario, unmodified 

potential connectivity 

preserved the effects of interannual to decadal scale processes such as El Niño and Pacific Decadal Variability on 

larval dispersal, although we note that current models disagree on how these systems may change in the future, if 

at all (Wang, Deser, Yu, DiNezio, & Clement, 2017). Furthermore, previous work found no significant changes in 

connectivity between hindcast and future simulations (Thompson et al., 2018). 

Reef survival analysis and recruitment 

To elucidate the drivers of coral decline, a Cox Proportional Hazard (PH) regression (Cox, 1972) was 

performed on the probability of reef collapse during the forecast. Here, reef collapse is defined as reaching a 

fractional coral cover of 0.1 or less. The Cox PH is a statistical model commonly used in medical studies to 

determine the effects of different factors on an outcome such as the survival or death of a patient. This model 

produces hazard rates that quantify the relative risk attributed to a particular covariate; here, we are interested in 

factors that either increase or decrease the probability of reef collapse. The significance of each of the following 

three covariates was tested: TST, sink strength, and unfiltered vs. filtered SST (with and without interannual 

variability, respectively). Sink strength was computed by summing the probabilities of larvae arriving to each site 

from all sources for each year, excluding self-recruitment; mean sink strength is simply the average of these 

probabilities across the 47-year hindcast period (Thompson et al., 2018; Thompson et al., 2014). The ‘filtered vs. 

and . Reefs were 

�� = 0. The final coral and macroalgal values at the end of the spinup were then 

hindcast matrices were used for the future projections. Using hindcast connectivity 

271 unfiltered SST’ covariate represents the risk of reef collapse with filtered SST relative to the unfiltered SST 

272 category. Reefs that had reached 0.1 coral cover by the end of the hindcast (described below) were excluded from 

273 the analysis. These excluded sites occurred along the Indochinese peninsula, Sumatra, Sulawesi and the Banda Sea 
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274 (Figure S6). Since the factors we explore in this model are time-varying, we used a time-stratified approach 

wherein separate Cox analyses was performed during set time windows (Dekker, De Mutsert, Van Dijk, Zoccali, & 

276 Jager, 2008). This generated hazard rates of factors during the time periods 2007-2027 (T1), 2027-2041 (T2) and 

281 

282 

284 Results 

2041-2054 (T3) denoting early, middle and late forecast periods, respectively. 
A

u
th

o
r 

M
a
n
u
s
c
ri
p
t

Finally, a set SST simulations with only self-recruitment (i.e. zeros on the non-diagonal entries of D) were 

performed to assess the effects of connectivity and recruitment on coral persistence. The total yearly recruitment 

was calculated by summing across the week-long reproductive period in the metacommunity simulation and then 

scaled by the average reef area (160 km2) to provide a relative measure. This ‘total relative recruitment’ metric is 

interpreted as the number of average-sized sites that experienced full recruitment (i.e., empty sites that were 

completely filled by newly settled coral). 

Coral and algal cover 

Overall, average percent coral cover 

greater temperature increase and the inclusion of interannual SST variability (unfiltered SST) (Figure 3). Algal cover, 

on the other hand, exhibited the opposite pattern. Fractional coral cover at the end of the hindcast period was 

relatively high across the CT, with a mean (± 1 standard deviation) of 0.79 (± 0.23) and 0.90 (± 0.13) for simulations 

that included (unfiltered) and excluded SST variance (filtered), respectively. At the end of the hindcast, 3.3% of 

reefs in the unfiltered scenario (N=69) and 0.19% of reefs in the filtered scenario (N=4) had a coral cover of 0.1 and 

less. The fraction of CT reefs with 0.1 coral cover and less at the end of the forecast increased with the severity of 

the SST scenario and ranged from 46.3% (N=962) to 93.4% (N=1945) in the unfiltered simulations and from 15.9% 

(N=331) to 71.9% (N=1498) in the filtered simulations (Figure 4). The distribution of collapse times, however, was 

very broad for the scenarios with smaller temperature increase: some reefs collapsed only after 10 years while 

others survived past 2057. As temperatures increased towards the maximum warming scenario of 2.0°C, half of 

the reefs collapsed by 2030, irrespective of the temperature filter. At the end of the temperature increase 

simulations, filtered scenarios without interannual SST variability had between 3 and 37 times the number of reefs 

in the highest fractional coral cover category (0.9-1.0) relative to the scenarios that preserved climate variation 

(Figure 4). By the end of all eight forecast scenarios, unfiltered simulations consistently had a larger proportion of 

the reef network in the lowest coral cover category (0–0.1). 

across the region exhibited faster decline under forecasts with 

302 Fractional algal cover typically increased as coral cover decreased (Figure 3). At the end of the hindcast, 

303 87.8% of reefs in the unfiltered scenario (N=1829) and 97.6% of reefs in the unfiltered scenario (N=2033) had an 

304 algal cover of 0.1 or less (Figure S12-A). In the 2.0°C-increase simulation, reefs with algal cover of 0.8 and above 
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0.54 (0.51, 0.57) 

0.65 (0.62, 0.68) 

Time Scaled mean sink strength2 Filtered SST relative to 

period (95% CI) unfiltered SST (95% CI) 

T1 0. 82 (0.78, 0.86) 0.30 (0.28, 0.33) 

T2 0. 87 (0.84, 0.90) 0.45 (0.42, 0.48) 

T3 0.70 (0.66, 0.73) 0. 89 (0.86, 0.93) 0.50 (0.46, 0.53) 
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305 represented 83.0% (N=1728) and 55.6% (N=1158) of the unfiltered and filtered network, respectively (Figure S12-

306 E). 
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For the following analyses, a reef ‘survives’ if its fractional cover is 0.1 or higher at the end of the forecast 

period. Higher values of TST and mean sink strength were associated with a higher probability of reef survival for 

the duration of the simulation (Table 1, Figure 5). These effects were weakest in the first time period and strongest 

in the last, where a 1-unit increase in TST and scaled 

approximately 82% and 89%, respectively. Reefs in scenarios with filtered SST had higher survival probability 

relative to unfiltered simulations (Table 1). As with TST and sink strength, this protective effect was greatest in the 

third time period, where the filtered SST regime resulted in an approximately 50% decrease in the risk of reef 

collapse relative to unfiltered SST (Table 1). 

For the same magnitude of temperature increase, reefs in the filtered SST scenario had consistently 

higher survival (i.e. staying above a coral cover of 0.1) throughout the simulation than the unfiltered version; 

during earlier time periods, reefs in filtered runs exhibited less decline than reefs in scenarios with less overall 

warming, highlighting how interannual SST variability 

temperature. Across the warming scenarios, reefs that experienced filtered SST had a 54% chance of survival for 

the duration of the simulation while reefs subjected to unfiltered SST had a 27% chance of survival (Figure 5A). For 

reefs in unfiltered and filtered scenarios, respectively, the probabilities of surviving through the end of the 

simulation were 55% and 84% (0.5°C), 30% and 63% (1.0°C), 16% and 41% (1.5°C), and, 7.0% and 28.0% (2.0°C) 

(Figure 5B). By the end of 2050, when collapse was underway in all scenarios, including interannual variation in 

temperature had an effect comparable to a 0.5°C - to 1.0°C-increase over 47 years in overall trend. 

Table 1. Relative hazards1 for reef collapse covariates among simulated Coral Triangle reefs across three time 

periods: 2007-2027 (T1), 2027-2041 (T2) and 2041-2054 (T3). 
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sink strength resulted in a risk reduction of mean 

can have stronger effects than long-term increases in 

This article is protected by copyright. All rights reserved 

328 



        

                 

                

               

                

          

              

        

  

              

              

                 

                    

                 

                

             

               

                 

            

              

                    

                

                 

              

                

             

                   

           

       

             

         

               

330

335

340

345

350

355

360

332 

333 

334 

338 

339 

341 

342 

343 

346 

347 

348 

349 

351 

352 

353 

354 

329 1For continuous variables, the relative hazard or hazard ratio is the relative risk of reef collapse associated 

with a 1-unit increase of the variable. A relative hazard of less than one indicates that the variable exerts a 

331 protective effect while a relative hazard greater than one is associated with greater risk of reef collapse. 

336 

337 

For the filtered SST categorical variable (interannual variability removed), this is the risk of reef collapse 
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relative to the unfiltered SST category (interannual variability preserved). 

2For ease of interpretation, results are shown for scaled values such that a 1-unit increase is equivalent to 

1 standard deviation (SD) where sink strength SD = 0.31. 

Recruitment and spatial patterns 

In the metacommunity model, recruitment is affected by coral cover at source sites, available free space 

at sink sites, and the potential connectivity linking sources and sinks. At a particular site, for example, recruitment 

may be low because of reduced coral cover at source sites combined with low potential connectivity values among 

the focal site and its source sites. Furthermore, recruitment may also be low if the focal site has no available free 

space, either due to high coral cover, algal cover or a combination of both. Assuming sufficient larval supply, coral 

mortality from increasing SST should lead to an increase in free space that facilitates coral recruitment across the 

Total relative 

settlement, was greater in simulations with normal connectivity compared to those with only self-connections by 

up to a factor of 6 (Figure 6). At the beginning of the forecasts with normal recruitment, unfiltered simulations 

exhibited higher relative recruitment, while filtered simulations had higher recruitment during later periods. 

Normal recruitment generally reached a maximum at a later time period in the filtered scenarios relative to the 

unfiltered simulations; this time lag was ~15 years in the 0.5°C scenario and decreased to ~5 years in the 2.0°C 

scenario. In the 0.5°C-, 1.0°C- and 1.5°C-increase scenarios, there were two recruitment peaks in the normal and 

self-recruitment time series with unfiltered SST due to free space becoming available as corals decline. In the 0.5°C 

and 1.0°C scenarios, recruitment is similarly high among filtered and unfiltered simulations during the last 24 

years, from ~2030-2054 (Figure 6a). In the 0.5°C and 1.0°C and 1.5°C forecasts with only self-recruitment, 

unfiltered simulations started with higher recruitment in the first ~20 years, were equivalent to filtered simulations 

during the intermediate period, and increased again towards the end of the time series. In the 2.0°C scenario with 

self-recruitment only, recruitment in the unfiltered scenario ultimately dropped below that of the filtered 

simulations during the last two years (Figure 6b). 

344 network. recruitment, defined as the number of average-sized reefs that experience coral 

358 Reliance on external recruitment was quantified by taking the difference in coral cover between 

359 simulations with interdependent connectivity and those with only self-recruitment, representing independent 

reefs. In the unfiltered scenarios, sites in the Indochinese peninsula, central Philippines, Micronesia, Flores Sea, 

This article is protected by copyright. All rights reserved 

356 

357 



        

             

                    

               

               

                

               

                

             

               

               

               

                 

                

                

              

       

             

              

              

                

              

               

              

               

                

        

           

              

                

               

                

365

370

375

380

385

390

364 

366 

367 

369 

371 

372 

373 

374 

376 

379 

381 

382 

383 

384 

386 

361 Celebes Sea and Solomon Islands were the most reliant on external recruitment (i.e. with the largest difference in 

362 coral cover: N=521, ≥75th percentile) at the end of both 2027 and 2054 (Figures S14 and S15). Reefs in the northern 

363 Philippines and Sumatra had the highest reliance in 2027 while those in the Halmahera Sea were most reliant on 

external recruitment in 2054. In general, these results are consistent across all temperature increase scenarios and 
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between unfiltered and filtered simulations. A notable difference is that while sites in the GBR and the Solomon 

Sea were heavily reliant on external recruitment in 2027 during the 1.0°C, 1.5°C and 2.0°C- filtered scenarios, these 

areas were strongly dependent on larval input in both 2027 and 2054 in the 0.5°C-increase scenario. Overall, there 

temporal separation 

simulations, such that sites that were maximally reliant in 2027 were less likely to remain so by 2054. 

Reefs in the eastern Philippines, Sumatra, northern Borneo, the Flores Sea, and the Banda Sea were the 

most sensitive to thermal stress and experienced major declines during the two mildest forecasts, the 0.5°C and 

1.0°C scenarios, with filtered SST (Figure 7). Sites in Micronesia, the central Philippines, the Solomon Islands and 

Papua New Guinea were of intermediate sensitivity and collapsed by the end of all other forecasts (but not in the 

0.5°C and 1.0°C filtered SST scenarios). Finally, reefs in the GBR, northern Australia, northern Philippines and 

eastern Micronesia were least sensitive and at least some sites within these areas maintained coral cover above 

0.1 even under the more severe scenarios. 

temperature output from biophysical simulations to elucidate the drivers of coral decline across a spatially realistic 

network. We find that coral population persistence under rising temperatures varies greatly across the Coral 

Triangle and its surrounding reefs both among and within forecast scenarios. These spatial patterns are driven by a 

combination of processes relating to temperature and larval connectivity. Our results suggest that interannual SST 

variability during climate change are a major determinant of coral decline and can exacerbate the effects of 

increasing temperatures 

anomalies are relatively strong during initial time periods and are effectively equivalent to a 0.5°C 

increase in SST time series without anomalies. In contrast, higher values of sink strength and thermal stress 

threshold confer a protective effect on reefs at the local scale. 

Forecast simulations with SST time series that were filtered to remove interannual variability exhibit 

higher mean coral cover than their unfiltered counterparts throughout the simulation (Figure 3), highlighting the 

368 is in external recruitment dependence in the filtered compared to unfiltered more 

377 Discussion 

378 This study combines a metacommunity model of coral-algal competition with seasonal larval dispersal and 

on coral reef metacommunities at the regional scale. The effects of these thermal 

- to 1.0°C-

detrimental effects of extreme temperatures on coral persistence. These results are in line with those from a 

391 recent study that illustrated how temperature extremes during climate change can drive decline in large marine 

392 ecosystems (Pershing et al., 2019). In addition to differences in coral cover, excluding SST anomalies delays the 
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393 onset of collapse for coral populations, facilitating higher reef survival (Figure 5). This effect is most pronounced in 

394 scenarios with lower temperature increase, suggesting that extreme phases of ENSO are a major driver of coral 

decline when warming is intermediate and a secondary driver under greater overall thermal stress in strong 

warming scenarios. In fact, recent work has noted a temporal shift from rare bleaching events before 1980, to an
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intermediate period from 1980 to 2000 associated with El Niño-driven bleaching on a global scale, and to bleaching 

that regularly occurs outside of El Niño conditions in the last 20 years (Hughes et al., 2018). Depending on the 

magnitude of temperature increase, policies that aim to limit overall warming based on averages alone may be 

insufficient to prevent regional coral decline if the frequency of El Niño events increases with the global mean 

temperature (Hoegh-Guldberg, Jacob, & Taylor, 2018; Wang et al., 2017). Nonetheless, there is still considerable 

uncertainty in the reponse of El Niño frequency and intensity to warming (e.g. An & Choi, 2015; Guilyardi et al., 

2012; Kim & Yu, 2012; Watanabe et al., 2012). Policies based on temperature recoil, i.e., allowing for overshoot of 

warming and relying on 

Socolow, 2013), may have limited impact on coral preservation. 

Coral populations in the CT 

parameters across sites were equivalent except for area, these results are driven by heterogeneities in connectivity 

and local SSTs. Reefs in the eastern Philippines, the Banda Sea, and Sumatra 

simulations, exhibiting collapse during 

susceptibility of the Philippines (Peñaflor et al., 2009) and Banda Sea (Mcleod et al., 2010) to future bleaching in 

terms of historic and present-day warming trend, as well from projected thermal stress increase (Donner et al., 

2005). Conversely, sites in the GBR, northern Australia and the Solomon Sea were relatively resilient, avoiding reef 

collapse under most warming conditions. However, we note that recent bleaching events led to high mortality of 

GBR corals in 2016 and 2017 (Hughes, Kerry, Connolly, et al., 2019), highlighting the effects that extreme warming 

conditions can have on sites that are considered resilient in our modeling results. Interestingly, our patterns of 

decline in the GBR (see Figures 7A.3 and 7A.4) are relatively similar to those of a recent modeling study focused on 

this area: northern and southern quarters of the GBR were less vulnerable to projected global stressors under RCP 

2.6 and 8.5 when compared to the rest of the region (Wolff, Mumby, Devlin, & Anthony, 2018). In general, reefs 

that exhibited the fastest decline seem to have low to intermediate values of both TST and sink strength, while 

areas that avoided decline had at least some reefs with high values of one or the other (Figure S18). 

The importance of network contributions to coral recruitment is underscored by 

simulations with normal connectivity and only self-connections. We see 

future carbon capture technology deployment to decrease temperatures (Tavoni & 

exhibited differential susceptibility to thermal stress (Figure 7). Since 

were most vulnerable in our 

the filtered 0.5°C scenario. Other studies have noted the potential 

our comparison of 

significantly higher recruitment with 

423 normal connectivity, though both normal and self-connectivity exhibit two visible peaks in the less severe warming 

424 scenarios (0.5 °C- and 1.0 °C-increase) (Figure 6). During the first peak in ~2020, there is still enough coral cover to 

fill the open space created by the initial decline. During the second peak in ~2045, coral cover has severely 
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426 declined such that the production of coral recruits is insufficient to fill available space. Unfiltered simulations had 

427 generally higher recruitment at the beginning of the forecasts since mortality (and thus open space) was higher; 

428 this pattern flipped towards the end of the simulation since scenarios without interannual SST variability typically 

had higher coral persistence by this point. While recruitment over time is clearly driven by temperature, the spatial 
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patterns of recruitment over time are driven by both temperature increase and connectivity. In general, sites that 

benefit most from external recruitment by the end of the forecast (Figures S14 and S15) are also particularly 

susceptible to coral decline (Figure 7). This implies that there is higher vulnerability to regional-scale disturbance at 

locations that rely heavily on external recruitment. 

In this study, we calculated TST (bleaching thresholds) based on a fixed climatological window, from 1960 

to 1980, implying that corals have no ability to adaptively respond. Because DHW is computed based on TST, this 

assumption likely overestimates the risk of coral decline on our simulated reefs and in that regard, our results can 

be considered a worst-case scenario. In fact, a modeling study projecting future coral bleaching (Logan, Dunne, 

Eakin, & Donner, 2014) found that calculations based on the previous 60 years (a rolling window that approximates 

genetic adaptation) decreased predicted bleaching frequencies by up to 80 percent when compared to calculations 

based on a static window. Furthermore, there is evidence that temperature variability is beneficial to coral TST: 

past exposure to a greater range of temperatures may lead to increased thermotolerance in some coral species 

(Bay & Palumbi, 2017; Carilli, Donner, & Hartmann, 2012; Mayfield, Chan, Putnam, Chen, & Fan, 2012; Putnam, 

Barott, Ainsworth, & Gates, 2017; Rivest, Comeau, 

(Ainsworth et al., 2016; Donner, 2011; Donner & Carilli, 2019; Guest et al., 2012; Hughes, Kerry, Connolly, et al., 

2019; McClanahan & Maina, 2003; Sully et al., 2019; Thompson & van Woesik, 2009). 

Precisely quantifying thermal tolerance is further complicated by the contribution of both environmental 

and genetic components (Bay, Rose, Logan, & Palumbi, 2017; Camp, Schoepf, & Suggett, 2018; Dixon et al., 2015; 

Torda et al., 2017); these mechanisms are also likely to be influenced by connectivity patterns (Kleypas et al., 

2016). A natural extension of our study would be to recalculate TST and DHW based on different assumptions 

regarding coral adaptive capacity as a proxy for genetic adaptation, community shifts, and larval dispersal to see 

how coral decline in the CT would be subsequently altered relative to our current results. We believe that the main 

effects of doing so would be reduced decline at the network scale and spatial differences at specific predicted 

vulnerable and resilient sites. Another important caveat of the present study is that it is based on the dynamics of 

a single species, A. millepora, which is thought to be particularly sensitive to thermal stress because of its colony 

growth form and tissue thickness (Loya, Sakai, Nakano, & Woesik, 2001). 

& Cornwall, 2017) and coral communities as a whole 

Incorporating the response of other 

456 species or entire coral communities with different parameterizations for competitiveness, fecundity and other life 

457 history factors could lead to different conclusions. 
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458 In this work, we find that thermal stress and larval connectivity interact to shape the resilience of 

459 individual reefs to changes in temperature on a spatially realistic network. This study is not intended to predict the 

true series of events that will occur in the extended CT region. This is partly because localized anthropogenic 

effects that strongly affect reef resilience such as fishing, pollution, etc. are beyond the scope of this study. For 
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example, our simulations do not capture the back-to-back GBR mass bleaching events (Hughes, Kerry, Connolly, et 

al., 2019) and predict high coral cover for that region. We also exclude processes such as larval dynamics (Connolly 

& Baird, 2010) and size-specific coral mortality (Hughes & Jackson, 1980) that would likely lead to faster coral 

decline in the model results, since recruitment would be reduced due to the addition of pre- and post-settlement 

mortality in newly settled corals. Finally, 

implemented on a single-reef system leads to coral- and algal-dominated alternative stable states where algae may 

“take over” once coral cover dips below a threshold (i.e., due to increased mortality). Other parameter values or 

certain levels of coral recruitment could lead to coral-dominated, algal-dominated or coexistence systems that 

exhibit different trajectory patterns. For example, a coral-dominated system may lead to slower coral cover decline 

overall since algae competition is not 

dominated system in the presence of sufficient coral recruitment (McManus et al., 2019). Due to the heterogeneity 

of reefs in this network in terms of SST and area, such changes in parameterization could have counterintuitive 

effects that are beyond the scope of this study. 

Our results imply that thermal stress and larval connectivity play significant roles in determining coral 

persistence of reefs in the CT. Any management recommendations should incorporate both of these processes, 

although the particular conservation goals dictate the most appropriate actions (Beger et al., 2015). For example, 

marine protected areas (MPAs) could encompass reefs that are predicted to experience relatively low thermal 

stress, yet these sites could become vulnerable if their larval source reefs continue to decline. Similarly, if the aim 

is to protect the most vulnerable reefs, preserving areas that supply larvae to those reefs may be insufficient (Hock 

et al., 2017), particularly under scenarios that lead to increases in the number of DHWs experienced. Future 

research should involve simulations which implement MPAs across a reef network (Melbourne-Thomas et al., 

2011) to test the efficacy of various strategies such as those based on network centrality metrics and outgoing and 

incoming larval connections (Kininmonth et al., 2019). Building on the results presented here, such studies will be 

critical for identifying management strategies to ensure the persistence of coral reefs in the CT region under 

continued ocean warming. 

Figure Legends 

we note that in the absence of recruitment, our parameter set 

a significant source of mortality. Coral may also recover in an algal-

488 Figure 1. Map of the Coral Triangle (CT) and surrounding areas. The CT-ROMS domain is within the gray box while 

489 reef sites are shown in blue. The dashed red line shows the official delineation of the CT (Veron et al. 2009) [Colour 

figure can be viewed at wileyonlinelibrary.com]. 
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491 Figure 2. Response of coral cover to unfiltered (interannual variability preserved) (A) and filtered (interannual 

492 variability removed) (B) temperature scenarios. Sea surface temperatures, degree heating weeks, and percent 

493 coral cover over time for the hindcast and future projection scenarios at site 1806 located in the central Philippines 

(see Figure S7 for exact location) [Colour figure can be viewed at wileyonlinelibrary.com]. 
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Figure 3. Fractional coral and algal cover over time for the hindcast, 1.0 °C- and 2.0 °C-increase scenarios for 

filtered and unfiltered SST simulations. Darker lines represent mean trajectory values across the network while 

lighter lines are individual trajectories from 

wileyonlinelibrary.com]. 

Figure 4. Histograms comparing the final fractional coral cover across the CT for unfiltered (black) and filtered 

(hatched light gray) SST increase scenarios. Overlap of unfiltered and filtered results are shown in hatched medium 

and unfiltered SST scenarios and (B) across all eight SST scenarios. Note that reef ‘death’ is defined as reaching 0.1 

coral cover [Colour figure can be viewed at wileyonlinelibrary.com]. 

Figure 6. Total relative recruitment over time showing (a) network and self-recruitment and (b) self-recruitment 

only. Results are normalized using the average reef size (160 km2), such that relative recruitment is equivalent to 

the number of average-sized reefs that are covered by newly settled coral. Each point is summed across the 

network and over the week-long recruitment period. Filled circles represent unfiltered scenarios while open circles 

are filtered scenarios; blue points represent simulations with interdependent, network recruitment, while yellow 

points experienced only self-recruitment, where reefs are independent of one another. Note the difference in 

scale between panels (a) and (b) [Colour figure can be viewed at wileyonlinelibrary.com]. 

Figure 7. Change in percent coral cover from the start of the hindcast to the final year of the 0.5 °C-, 1.0 °C-, 1.5 °C-

2.0°C-increase scenarios 

wileyonlinelibrary.com]. 
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